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ABSTRACT: The starting point of this vest/ga .itonis the pro-

pert lea o-f restricted quadratic f~p( (j3Ax. xt$41 where A

is an Wm real symmetric matrix, and S is a subspace. The index

theory of Hestenes (1951) and Maddocks (1985) that treats the more

general Hilbert space version of this problem Is first specialized

to the finitedimensional context, and appropriate extensions,

valid only in finIte/vdmenslons, are made. The theory is then

applied to obtain various inertia theorems for matrices and posl-

tIvity tests for quadratic forms. Expressions for the Inertias of

divers symmetrically partitioned matrices are described. In par-

ticular, an inertia theorem for the generalized Schur complement

is given. The investigation recovers, links and extends several,

formerly disparate, results In the general area of Inertia
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§1. Introduction

The main subject of this presentation is the properties of

a quadratic form defined on R m by an mim real symmetric matrix

A when attention is restricted to a given subspace Sc P, If

the subspace S is actually the whole of a, the essential pro-

perties of the quadratic form are encapsulated in the inertia of

the matrix A, denoted InA, namely the triple comprising the

number of positive, negative, and zero eigenvalues. It will here

be shown that this concept of Inertia can be usefully generalized

to obtain a triple In (S;A), depending on both the matrix A and

the subspace S, that captures the properties of the quadratic

form x'Ax restricted to S.

It is then shown that In (S;A) is Intimately connected to

InA and In*(S A;A), where SA is the subspace that Is A-ortho-

gonal to S. The main idea is that the properties of WAx on S

are completely determined if the properties on Pm and on SA

are known. This result is then applied to obtain Inertia theorems

for matrices of the type B'.AB, and for symmetrically partitioned

matrices. Particular emphasis is given to the matrix construction

known as the generalized Schur complement. Tests concerning post >

tivity of A on subspaces are also described. ( I

Some of the results stated here are necessarily complicated.
Ires

They comprise equalities between several different Indices or

dimensions, and It seems unlikely that many of these indices wille 1

be readily calculable in concrete applications. However, all of

the results obtained here include known results as special cases.
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Invariably, these prior results comprise situations in which

several of the indices are known. Thus the theory developed here

casts light on the necessity of hypotheses and assumptions made In

previous analyses. Moreover, a considerable unification is

achieved by the construction of connections between previously

unrelated works.

The presentation Is structured as follows. In §2, the index

theory of Hestenes (1951) and Maddocks (1985), which was derived

in the context of the isoperimetric calculus of variations, Is

specialized to finite-dimensions, and the appropriate extensions

are made in order to obtain inertia theorems. Then, in §3, the

theory is reformulated In terms of the Moore-Penrose, or general-

ized, inverse of A. Connections between InA and In B7AB are

described in §4. Of course, the classic result known as Sylvester's

Law of Inertia is recovered as a particular case. Attention Is

turned to partitioned matrices in 995 and 6. Preliminary results

are given in 95, and the generalized Schur complement Is discussed

in 96. Theorems of Morse (1971) and of Han (1986) are also dis-

cussed here. Finally, In 97, the particular question of positivity

on a subspace Is treated.

It should be emphasized that the theory given here overlaps

with, and builds on the analysis of many authors. Because there

are so many connections with prior works, I do not attempt detail-

ed attributions here in the introduction. Full discussion and

references are given at the appropriate junctures throughout the

body of the text. The interrelations of this work and prior

analyses are also summarized in 96.
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§2. General Results Involving A-orthogonal Complements

The content of this section is a finite-dimensional version

of the theory of restricted quadratic forms derived in Maddocks

(1985, *2), which In turn is a development of the theory of

Hestenes (1951). Considerable changes in notation and emphasis

are made in order to facilitate applications to, and comparison

with the theory of symmetric real matrices. Consideration of the

finite-dimensional case also allows various extensions of the

theory. The scope of the development given here is limited to the

material required to understand the statement of the main result,

namely Theorem 2.6. In particular the complete proof of Theorem

2.6 is not given. The steps omitted here can be found in Maddocks

(op. cit.).

Consider a real symmetric mm matrix A. We shall study the

properties of the quadratic form Q(x) a x' Ax for x e S a sub-

space of F. The main focus of our attention is the connection

between the properties of Q restricted to S and of Q

restricted to other related subspaces.

It Is apparent that the properties of Q on S are inti-

mately connected to the Inertia, In(M) a (w(M), P(M), 6(N)), i.e.

the triple comprising the number of positive, negative, and zero

elgenvalues, of the symmetric matrix H = B7 AB. Here B is any

mxm matrix whose range Is S. Accordingly, the results presented

here can later be couched in terms of inertia theorems for certain

matrices.
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The following notion of A-orthogonality will appear through-

out..

Definition 2.1: Two vectors Xl, x 2 a Pm are termed A-orthogonal

if

x IfAx - 0.
1 2

Remarks.

(a) As A is symmetric, the relation is symmetric.

(b) Any vector is A-orthogonal to any element of the kernel

or nullity of A, which is here denoted N(A).

(c) If either of the vectors is an eigenvector of A not in

N(A), then orthogonality and A-orthogonality are equi-

valent.

(d) Whenever A is neither positive nor negative semi-

definite, there exist vectors x such that Ax o 0,

but x7Ax a 0.

(e) The concept of A-orthogonality extends to subspaces in

the obvious way. The A-orthogonal complement of a

subspace S will be denoted A. It should be noted

that for any subspace 3, N(A)c SA .

(f) Because of remark (d) above it is possible that

SnSAnR(A) o (0).

(g) A useful characterization Is provided by

S A- (y: Ay a S1) a (y: 3j Ay - 0, Vx a S).

This property of 5A can be used to derive simple results, such

as

S AA a 9 + .(A),

M



and

(SAnTA)A . S + T + 11(A).

L emma_2.1. Any subspace of F m has a mutually A-orthogonal basis.

Proof. Consider any basis w1 , 1 1,..,,P. Then, as A Is

symmetric, the matrix W - (wJ)

Wij w WTA
ii I j

Is symmetric. Therefore there exists an orthogonal nxn matrix

R =(r j) such that P'AP Is diagonal. The set

{ul : U1  rji"j}

Is a basis because P is nonsingular, and by construction it is

also mutually A-orthogonal.

Remark. Because A I* not necessarily definite, the obvious

generalization of the Gram-Schmidt procedure does not work. In

particular It Is not In general possible to construct an

A-orthonormal basis.

Loma 2.2. Let B be an mvn matrix of rank p. Let (w 1)

1..N.. I C F * be any basis for S -R(B), the range of

S. Define the p-p matrix N by N - Nip~ (W IAwj). Then

InB' AS = In N + (o, o, n-p) . (2.1)

In particular, If (w) IIs a mutually A-orthogonal basis, then

the inertia of the nyn symmetric matrix 3' AS Is determined by

the Inertia of the p-p diagonal matrix Diag (W',Aw1).
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Proof. The PoIncare variational characterization of the eigen-

values of a self-adjoint operator (e.g. Weinberger, 1974) implies

that P(M), the number of negative eigenvalues of a symmetric

matrix M, coincides with the largest dimension k such that

x' Mx is negative for all x in a subspace of dimension k. This

result can be applied both to the nxn matrix B AB and to the p-p

matrix H - (v'TAvi}. But any k dimensional subspace of Pn on

which B AB is negative, provides a k dimensional subspace of

Rp on which H is negative and vice versa, via the following

construction. Suppose (x I) I a 1,...,k, x£ .n is a basis of

a negative subspace of BAB. Then BxI o 0, and as (vs} is a

basis of R(B), 3 an mwp matrix K - (k i} of rank k such

that BxI - I k Ivj. By construction, the rows of K span a

negative subspace of dimension k in PP. Thus P(B7AB) - P(W).

In a similar fashion it can be shown that w( AB) - w(N).

The last equality contained In (2.1) is then easily obtained once

It Is remarked that for any qyq matrix N

w(m) + P(M) + 6(m) - q. (2.2)

Remark. When the properties of the quadratic form x' Ax, x c R(B)

are under consideration, It Is natural to consider the eigenvalue

problem

B'ABy - XB'By, By o 0.

It Is eigenvalues In this sense that determine whether x' Ax is

positive definite on R(B). Thus, zero eigenvalues of 5 AB that

have an elgenvector y c N(B) are not of concern. The modified

eigenvalue problem leads to a modified inertia

7



In *(B 'TAS) - In(B7 AB) - (0,0, dim M(B)).

Accordingly, equation (2.1) appearing In Lemma 2.2 can be rewritten

In the form

In* (B7 AB) - InW. (2.3)

Although we shall not pause to prove it, the modified inertia also

measures the number of positive, negative and zero eigenvalues A

of the problem

x c It(B) , Ax - A xE N(S)

As an Immediate Corollary to Lemma 2.2, we have

Corollary 2.3 If B 1 is mxn, B 2 is axt and R(B 1) R(B 2)

then

In BAB + (0,0, t- n) aIn' 2 A321 122

Remark. If the matrices B1I and 8B2  are square and of full

rank. I.e. a - n - t- p, Corollary (2.3) reduces to the

celebrated result known as Sylvester's Law of Inertia.

Because of Lemma 2.2 It Is practical to associate an inertla

with the subepace S.

Definition 2.2. The Inertia of a subspace 9, denoted In (S;A)

or In (S), is defined by

In (S;A) a In W,

where N is the matrix defined in Lemma 2.2. By the remark

following Leoma 2.2 and equation (2.3)

In *(S;A) -In*(B AD)



where B Is any mwn matrix whose range Is S. Obviously the

quadratic form Q(x) - xT Ax satisfies xT Ax z 0, Vx e S if and

only if P (S;A) - 0, with analogous result holding for posi-

tivity, nonpositivity etc.

Definition 2.3. For a subspace Sc m  the relative nullity of A

on S, denoted d*(S;A) or just d (S), is defined by

do(S;A) - dim (SnS ArR(A)). (2.4)

Remark. In Haddocks (1985) the relative nullity is given a

different definition and (2.4) has the status of a theorem. In

the work of Hestenes as is reported in Gregory (1980, 42), the

relative nullity is given yet another equivalent definition.

Lemma 2.4. For any mym matrix A, and subspace ScP m the relative

nullity d*(S;A) and 6*(S;A), (defined In Definition 2.2) are

related by

(S;A) - dlm(SnS ) d(S;A) + dim(N(A)nS) (2.5)

Remark. The quantity dim(SnS A  is sometimes called the nullity

of A on S.

Proof. The second equality In (2.5) follows Immediately from

Definition 2.3 and the facts that R(A) - (N(A))L and N(A)cSA.

To prove the first equality consider an A-orthogonal basis

(si}, I a 1,...,p of S, the existence of which Is guaranteed by

Lemma 2.1. Then, by definition,

6 (S;A) a 6(w),

9



where 6(W) is the number of basis vectors amI satisfying

81As -0.

Contrariwise, any x e SrnS Acan be written In terms of the

basis (ai of S as

but for x to be In S A

a j<SA 1.s> - 0.

Thus, those am1 satisfying s'1 As I - 0 comprise a basis of SnSA

and consequently,

8(W) - dim(SnS A.

Lemma 2.5. Let S and Y be subspaces of F with SnR(A) c Y~rR(A)

and YnYAnR(A) - (0). Then

d*(S;A) d 4(SAt.YAA).

Pro of. By definition

d(S;A) -dim(SnSAR()

and

d* (S~rYA;A) - di5{8 AryAtr (SA(,,A)A .R(A)).

It was earlier remarked that

(5AfYA )A . S + Y + N(A),

and by hypothesis SnR(A) c YAnR(A). and YrnY~nR(A) - (0).

Consequently,

d (SAnYA;A) - dl.(($ + Y)mSAAYAnR(A)) - dim(SnSAnY~nR(A))

a dia(SnS AnR(A)) - d9(S;A).

10



Remark The hypotheses on the subspace Y appear unduly

restrictive, but they encompass the Important case Y = (0), In

which we obtain the result

(S;A) - d( A)

Theorem 2.6. Let A be an mym real symmetric matrix, and let S

and Y be subspaces of Fm with Sn-R(A) c YAnR(A), andI

Yr)Y~R(A) - (0). Then

In *(YA;A) - In*(S;A) + In*(SA~yA ;A)

+ (d (s), d (s), - do(s) - dim(Sr~S A) (2.6)

The quantities S A, In* and do were Introduced In Definitions

2.1, 2.2 and 2.3

Proof. Identity (2.6) assets three equalities. The equality

v * Y;)-P(S;A) + lJ (SArnYA;A) + d*(s) (2.7)

Is a restatement of Theorem 2 of Haddocks (1985) applied to the

operator L - PAP, where P Is orthogonal projection onto the

subspace YA. The equivalence is apparent once it Is remarked

that the number of negative eigenvalues of PAP, denoted ar (PAP),

is Just P (YA;A), that the index d-(S) is equivalent to i-'(S),

that

SPAP . (SAryA) u (yA)±,. (2.8)

and that

Sn SA - SnS AnyA . S9 ,PAP. (2.9)

Similarly, consideration of the operator L -- PAP provides

the equation

11



?~(YA;A) - W*(S;A) + W*(S A nYA;A) + do(s). (2.10)

The final equation can be obtained as follows.

Three applications of Lemma 2.4, yields

6 (Y A;A) =d*(YA;S) + dim{N(A)flYA) (2.11)

8 (S;A) =dim(S'nS A (2.12)

and

8*(Sr .yA ;A) = d (S AnY A;A) + dim(N(A)nS AnyA) (2.13)

Now, the A-orthogonal complement of any subspace contains N(A),

and by hypothesis

dim(YnYAnR(A)) - &(YA;S) = 0

Accordingly (2.11) and (2.13) reduce to

6 *(YA;A) -dim N(A),
and

6*(yA;A) - 6* (S A AA) - d*(SAnyA ;A).

Lemma (2.5) and equation (2.12) then imply the equation

8 *(YA;A) 8 * (S;A) + 6*(S AnYA;A) - dO(S;A) - dim(SOSA

as required.

Remark. Theorem 2.6 will be applied in §6, and the full result

stated above will be required. Nevertheless, for most

applications the case Y - (0) suffices. The special case is

sufficiently ubiquituous In the sequel that it is formalized as.

Corollary 2.7 Let A be an m-m real symmetric matrix, and let

9 be a subspace of F . Then

-In n(S;A) + In*(SA ;A) + (d*(s),d (s), - d.(s) - dim(SnS A)

12



Proof. The subspace Y -(0) satisfies the hypotheses of Theorem

2.6,.for then YA - Rm. Moreover, the Inertia of the subspace Rm

coincides with the inertia of the matrix A.

Remark. Han & Fujiwara (1985, Theorem 2.3), obtained Corollary

2.7 In the further special case d (s) - 0. Their result Includes

the additional hypothesis

SnS A c N(A)

so that

d*(s) = dim(SnS A oR(A)) -0.

Han & Fuztlwara's development was Independent of the works of Hes-

tens (1951) and Maddocks (op. cit.), and they actually adopt a

different definition f or the quantity that Is here denoted

In*(S A;A).

Example 2.8.

m = 2, S - (s,o), s c F, where (s,0) denotes a column

vector, and A - [1 0j.

Then

A 2 AS - span(s,0), R(A) - P , do(S;A) - 1 - dim(SIS )

(1,0) A(1,0) = (1,0)' (0,1) -0, and In*(S;A) - ln*(S A;A)-

(0,0,1).IConsequently, Corollary 2.7 predicts that

InA - (0,0,1) + (0,0,1) + (1,1,-2) - (1,1,0),Iand of course the eigenvalues of A are ±1.

Corollary 2.8 can be applied to clarify the geometrical role

played by do(S;A). Because the sum of the components of an

13



inertia equal the dimension of the space, we find from Corollary

2.8 that

m - dim S + dim S
A + d*(s) - dtm(snsA

Consequently, R can be decomposed as the sum of S and SA

precisely If d (s) - 0. The decomposition is a direct sum If the

stronger condition dim(SnS A ) - 0 is satisfied.

§3. Results Utilizing the Generalized Inverse of A

The results of §2 are direct in the sense that they do not

Involve any inversion of the matrix A. It will here be shown

that when the Moore-Penrose, or generalized, inverse of A is

introduced, Corollary 2.7 can be reformulated to emphasize the

symmetry, or duality, between the subspace S and the subspace

S , the usual orthogonal complement of S.

Definition 3.1. For an mxn matrix C, the generalized, or

Moore-Penrose, inverse is the unique nym matrix C+ satisfying the

four conditions:

(i) CC+C =C

(11) C+CC + =C +

(111) (cc+), cc C+

(iv) (C+C)' = C+C.

Geometrically, C+ can be regarded as the inverse of the

Invertible operator that is obtained when C is restricted to

domain R(C'), and range R(C). It should be remarked that

N(C + ) - N(CT ) and R(C + ) - R(C ).

14



As a simple consequence of the definition we have that

(C )+ _ (C'I)T.

When A is symmetric, A is also symmetric, and conditions

(11) and (iv) both reduce to

A+A - AA

Moreover, direct consideration of the standard eigenvalue problem

demonstrates that

InA = InA +  (3.1)

Theorem 3.1. Let A be an m-m real symmetric matrix, and let S

be a subspace of Pm . Then

InA = In (S;A) + In*(S';A + ) + (d,d, - 2d), (3.2)

where

d - dim(SnA+S') + dim(ASnS). (3.3)

The triple In was Introduced In Definition 2.2.

Proof. Consider Corollary 2.7 and notice that

In (P m;A) - InA
and that

SA = N(A) & A+S (3.4)

the sum being direct. Then (2.6) can be written as

InA - In (S;A) + In (N(A) + A S ;A)

+ (d,d, -d - dim(Sn(N(A) + A +(S)))) (3.5)

where d Is given by (3.3). Because the subspaces N(A) and

A+S are mutually orthogonal and mutually A-orthogonal,

15



In *(N (A) + A +$ ;A) - In (A +S1 ;A) + (0,0, din N1(A)) (3.6)

Moreover, by Definition 2.2 of In ,and property (11) of

the definition f orA

In*(A +S1;A) - In*(S';A + (0,0, dim(N(A)nS')). (3.7)

Now

dim(Srn(N(A) + A +S~) dim(SnN(A)) + dim{SnAS+),

and

dim{N(A)nS') + dim(N(A)nS) - din N(A).

Consequently, substitution of (3.6) and (3.7) in (3.5) yields (3.2)

as required, where d Is defined by the first equality in (3.3).

The second equality follows because SnA +S' Ic R(A), and when

restricted to the range of A, AA+acts as the Identity. That Is

dim(SnA +SL I dim(ASnAAS+') - dim(ASnSL?

Remarlks.

(a) Han G Fujiwara (1985, Corollary 2.5). obtained the

special case of Theorem 3.1 that arises when the addi-

tional two conditions of A being Invertible and d

vanishing, are Imposed as hypotheses.

(b) The roles of S and S', and A and A + can be

permuted in the proof of Theorem (3.1) to yield three

other analogous equations. However, in light of (3.1)

and (3.3) no new Information Is obtained.

16



44. Connections between In A and In B7AB

As before A denotes a real mxm symmetric matrix, and B

denotes a real myn matrix. Recall that In(B7AB) is the triple

comprising the number of positive, negative and zero eigenvalues of

the standard eigenvalue problem

3?AfX a XIx, x e R
n

whereas In*(B7AB) Is the triple comprising the number of

positive, negative and zero egenvalues of the eigenvalue problem

B7ABy - A BBy. y e Rn , By o 0.

According to the theory of 62, with B mxn,

In(B7AB) - In*(B7Ah) + (0,0, n-p), (4.1)

where p Is the rank of B, I.e. p - dimR(B).

Furthermore, if S - R(B), the inertia In (S;A) associated with

the subspace S satisfies

In*(S;A) - In*(B7).

Consequently, Theorem (2.5) and (3.1) can be applied to obtain

Inertia theorems for certain matrices.

In effect it only remains to obtain the most explicit

expressions for quantities such as 9A and SmSA.

Suppose that S - R(B), then

A- fy: Ax - 0, Wx R(B) - (y: y ABz - 0, yz an).

That Is R(B) (R(AB)) N(3 A). It Is also convenient to note

that

17



N (B'A) - A*XM(D' ) * 19(A). (4.2)

the sun being direct. Here A+ Is the generalized Inverse

defined In 93. Equation (4.2) Is merely a restatement of (3.4).

because 1(09 R(B)". Consequent upon (4.2)

dim(R(B)nR(B) A) - dim(R(B)n(A +N(B ) N (A)))

and &(R(B)) a dim(R(B)tA NWB))

Application of Corollary 2.7 then provides

Corollary 4.1. Let A be an m-m real symmetric matrix, let 8

be an mxn real matrix, and let C be any axq matrix whose range

is 1(3 A). Then

In A - InS'e AB + In C dAC + (dd, - d - e) (4.3)

where

d - dim(R(B)r'A +N(B ) (4.4)

and

a - dim(R(B)nN(B' A)). (4.5)

Remarks.

(a) A result in terms of InS' B and InC t A 1. easily

obtained by exploitation of (4.1).

(b) Notice that d - e precisely if R(B)nN(A) - Q.In

particular If A is invertible, d a a.

(c) One possible choice for C Is the mxm matrix

When 2 has rank m, Corollary (4.1) can be simplified. For

then. 3(5'Mr ) and R(B) a 0' Accordingly. d - 0. e b(A),

and In C AC -(0.0, 6(A)).

is



Thus we have

Corollary 4.2. Let A be an anm real symmetric matrix, and B

be an mn, n z a, real matrix of rank a. Then

InA - In BlAB + (0,0, m-n).

Remark. The case m - n Is Sylvester's Law of Inertia, and the

case n > a is merely a trivial extension that could be obtained

directly. The more complicated result embodied In Corollary 4.1

indicates that there can be no direct and simple extension of Syl-

vester's Law of Inertia to the case where B is not of rank a.

In a similar way Theorem 3.1 can be translated into purely

matrix form.

Corollary 4.3. Let A be an awm symmetric matrix, let B be any

mn matrix, and let C be any mxq matrix whose range Is N(B).

Then

InA -nln AB + InC 1 A+C + (d,d, -2d),

where

4 - dim(R(B)nA+N(B')) - dia(AR(B)nN(B' )).

Remarks.

(a) One possible choice for C Is the awn matrix

(I - ) VB) - I - 31;,.

(b) As before, a result in terms of InB'AB, InCA+C. and

the ranks of B and C, Is easily obtained via (4.1).
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95. Avvlications to Partlitioned Matrices

We shall here apply the theory of §93 and 4 to obtain results

relating the inertias of certain partitioned matrices to the

Inertias of submatrices.

Lemme 5.1. Let A be an mw symmetric matrix, and let L denote

the 2mx2m symmetric matrix

Then

InL a (mm, 0). (5.1)

Moreover,

L - [!  ] .[ •] (5.2)

Proof. Denote the elgenvalues of A by pit i - 1,...,.m. and

denote the corresponding eigenvectors by uI . Then L has m

positive eigenvalues X, given by the formula

+ +

with corresponding eigenvectore (I+ y~y). Similarly, L has a

negative eigenvalues

p / - T+

with eigenvectors (Xi y,y).

1 Here and throughout we adopt the convention that when x and y

are column vectors, (x,y) is also a column vector.



Remark. Equation (5.1) Is widely known, see for example

Chabrillac & Crouzeix (1984), Cattle (1974) and references

therein. The explicit proof by exhibition of the elgenvalues and

elgenfunctions that is given here will be exploited later.

Lemma 5.2. Let A be an mum symmetric matrix and let B be an

awn matrix of rank p. Then

In [re B] - (m-d. m-d, n-p + 2d) -In *(11(B T ); -A), (5.3)

where
d = dim(N(A)nN(B7 )) + dim(AN(B')r'R(B))

-dim (N(B' )nN(B ) A) = 6 * (N(B7 );A) (5.4)

Proof. Apply Theorem 3.1 with the matrix L of Lemma 5.1 playing

the role of A and the subspace S being (P ,R(B)). Then

In L - In i ] + n(Q (B);L- 1) + (d~d, -2d) (5.5)

where d - dim((P ,R(B))nL- 1 (O.N(B' ))).

But Lemma 5.1 provides L-1  explicitly, and consequently, for

y eN(D' ), L-1 (O,y) a (PO,R(B)) whenever y e 11(A) or Ayec R(B).

Consequently, d is given by the first equality In (5.4). TheI second equality follows from (3.4). and the third *quality Is then

given by (2.5).

Vurherore* -((Q N1(e )); L-1) - In (N(37 ); -A),

from (4.1)
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na '[ ] n[ (0.0, n-p).
In* In* [ e O,

and from Lemma 5.1

InL - (a,m,O).

Substitution into (5.5) then yields (5.3).

Remark. Chabrillac & Crouzelx (1984) obtained a result related to

Lemma 5.2. Detailed discussion of the connection Is deferred to

07. Han & Fujlwara (1985, Theorem 3.4) obtained the special case

that arises when the additional hypothesis d a 0 is imposed.

Then

In (N(B );-A) - (v*(N(e');A), w ((e 1 );A),O),

and because P (N(B');A) + w (N(B );A) - a-p, equation (5.3) can

be rewritten

In o (p,p,n-p) + In*(N( );A) - (p+w ,p+v ,n-p),

Example 5.3. Take A - 0 1J, B I [ .

01 0.

Then a - 3, n - 1, and p a 1. Moreover, N(B') - (a,0,8),

R(B) - (0,r.0) a,B., a V and AN(B' ) (0,a+B,0). Further-

more, because N(A) - (a,O,-a), a c V, d = 2. It is also

apparent that In* (N(' );A) a (0,0,2), because

(a.0,B)IA(a,0,) - 0. Thus Lemma 5.2 can be applied to find

that
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010 01

In 0 1 1 -(3-2, 3-2, 1-1+4) -(0,0,2) -(1,1,2),

which result can be verified directly.

Lemma 5.2 is somewhat unsatisfactory In the sense that the

qu~antity In(N(B');-A) Is In general undetermined. Accordingly,

special cases are of interest.

Corollary 5.4. Add the condition p -a to the hypotheses of

Theorem 5.2. Then

In[: re B0 (mamn -a). (5.6)

Proof When p - m, N(B") -(0).

The case n - m Is well known. The case n > a can be

obtained directly, without recourse to Lemma (5.2). See, for

example, Cottle (1974) and references therein. A less trivial

special case is

Corollary 5.5. Add the condition N(D' )cN(A) to the hypotheses

of Theorem 5.2. Then

InIImi 0] a (p.p~n + a - 2p).

fro When NWB )cM(A),

1n (N(B );-A) -(0.0, din 18)).

and d a dinW() aa -p.
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66. Partitioned Matrices and the Generalized Schur Complement

In this section N denotes an txt real symmetric matrix that

Is partitioned In the form

M , (6.1)

where A and C are mxm and nxn real symmetric matrices, and B

Is an mxn matrix of rank p. Following Carlson et al (1974), we

have

Definition 6.1. The generalized Schur complement of A in M,

denoted M/A, is

M/A - C - 87A+B. (6.2)

where, as before, A+ denotes the Moore-Penrose inverse of A.

Whenever A Js Invertible A+ = A- 1 , and (6.2) reduces to the

standard definition of the Schur complement of a symmetrically

partitioned matrix.

In this section the preceding development will be applied to

obtain certain equalities involving the inertias of M, A and M/A.

These equalities subsume inequalities obtained by Carlson et al

(op. cit.), as well as the classic result that applies when A is

nonsingular (vide infra). Theorems due to Morse (1971) and to Han

(1986) will also be discussed.

We first apply Corollary 2.7, with S - (R(A).O n). Here, as

before, (x,y) denotes a column vector. Thus

S ((x,y): Ax + By e N(A))

or

- (-A+B Vn, Fn ) (N(A),Qn),
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and SnS~ N s2) 50 *i(a) = 0. Consequently,

In M = In (R(A);M) + In (S M;H). (6.3)

It Is apparent from Definition 2.2, with the underlying choice of

basis taken from sigenvectors of A, that

In (R(A);M) - (w(A), P(A), 0). (6.4)

Theorem (2.6) Is next applied to the subspace

Q -(-A +BR(M/A). R(M/A))

regarded as a subspace of S.Consequently, the subspace Sn

must be determined. The calculation is as follows. An element of

8NflQM Is of the form

(x- A4Bz~z), x £N(A), z a F

where

(x - A +Bz,z)'M(-A +By, y) 0,O Vy a R(M/A). (6.5)

Block multiplication and the properties of A + demonstrat& that

(6.5) is equivalent to

9(B'x + (M/A)z) - 0, Vy c R(M/A).

Thus

B7 x + (14/A)z £N(M/A),

or

z + (N/A) B xe N(M/A).

Consequently,

S nQ M- ((x-A Bz,z): x e N(A) and z + (N/A)+B7X 6c 11M/A)) (6.6)

Moreover, SnS NQ - (Q), so d*(Q) - 0. Theorem 2.5 therefore

allows (6.3) to be written in the form
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InN = In (R(A);M) + In (Q;M) + In (S AQ ;M) (6.7)

It has already been noted in (6.4) that In (R(A);M) has a

particularly simple form. It is next shown that

S

In (Q;M) = (-(M/A), P(M/A),O). (6.8)

To appreciate this fact calculate that the restricted quadratic

form
wT MW, w C Q,

is identical with

(-A+By, y)t M(-A+By, y), y c R(M/A)

which, because A+A+ A A+, is equivalent to

yT (M/A)y, y E R(M/A).

As before, Definition (2.2) then implies (6.8).

In light of (6.4) and (6.8) it remains to analyze the term

Tn (SMnQM;M) appearing in (6.7). To this end consider the

quadratic form
T
z (M/A)z, z e StQM

which is equivalent to

(x - A+By, y)'TM(x-A +By, y), y = -(M/A)+B x + w,

x e N(A), w e M(M/A).

or

2x'Bw - x'B(N/A)+B ' x , xE N(A), w E N(M/A).

From this last expression It Is apparent that

In *(SMnQM;M) - In*(N(T);L) (6.9)

where the txt symmetric matrices L and T are defined by

L - (MA) V 
(6.10)
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and

T = ] (M/A) (6.11)

The determination of an Inertia of the form (6.9) is precisely the

question of restricted quadratic forms that will be treated in §7,

and either of the two methods described there could in principle

be applied. Moreover, the calculations arising are not as

formidable as might be imagined, for Corollary 5.5 applies to

state that

InL = (p~p,n~m-2p),

where p is the rank of B. It can also be easily verified that

1B+  -B(M/A)+B' ]

Nevertheless, that course Is not pursued here. Instead, a direct

assault is launched.

Theorem 6.1. Let M and M/A be defined as In (6.1) and (6.2).

Then

InM = InA + In(M/A) + In (B'N(A)nR(M/A);-(M/A)+ )

+ (t,t,-t-dim{B'N(A))) (6.12)

where

t = dim{B'N(A)nN(M/A)) (6.13)

Proof. The matrix L defined in (6.10) can be factored as

[B! 1 )[- (r/A) + 1]C! [ ] 0 L

Accordingly,

In (N(T);-L) = In (BN(T);L) + (0,0, dim(N(B)nN(T))) (6.14)
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where the matrix T was defined In (6.11). But

dim(N(B)PN(T)) dim(N(BT )rN(A)) = 6(A) - dim(R(D)nN(A))

b(A) - dim{B'N(A). (6.15)

Furthermore, In (BN(T);L) can be estimated directly. The objec-

tive is to construct a L-orthogonal basis for BN(T) and apply

Lemma 2.2. The subspace BN(T) can be decomposed as

iN(T) (E{BN(A)rnR(M/A),Q) 0 (BT N(A)nN(M/A), B!N(A)nN(M/A))

S11S2 S 3'

It Is apparent that the subspaces S i are orthogonal. It can

also be verified that they are L-orthogonal. Consequently,

In (iN(T);L) - In*(S 1;L) + In (S 2;L) + In (S3 ;L). (6.16)

Now
7 n

(2aL) L(0,*) - 0, Vx e P

so

- b(M/A) - dim{B' N(A)nN(t4/A)). (6.17)

Moreover, as was described In the proof of Lemma 5.1, the vectors

(y,* y,) are sigenvectors of L(with corresponding eigen-

valus±*) whenever y, N(M/A). Thus the subspace S2 i

sapped into itself by Land

In (S 2 ;L) - (t,t,0) (6.18)

where

t -dim(B'N(A)nN(M/A)). (6.19)

The best that can be said about the remaining term Is that
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In (91 ;L) -In (B N(A)nR(M/A);-(4/A) ). (6.20)

Equations (6.4), (6.7), (6.8). (6.9) and (6.14)-(6.20) pro-

v~de (6.12) and (6.13) as required.

Remarks.

(a) The classic result In this area concerns the case

N(A) a (0), in which

InM - InA + In (M/A), (6.21)

which formula is due to Haynsworth (1968). Theorem 6.1

demonstrates that the conditons

B'T N(A)cR(M/A),

and

In*(B N(A);-(M/A) ) - (0,0, dim(8 N(A)))

are necessary and sufficient for (6.21) to hold.

(b) Carlson et al (1974) obtain the Inequalities

wr(M) a ur(A) + v(M/A)

P(H) z P.(A) + P(M/A)

that arise from (6.12) when the last two terms are

discarded. The Inequality

8(M) % 6(A) + 8(M/A)

is then Immediate. They also obtain necessary and

sufficient conditions for equality In these

inequalities, namely:
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N(N/A)cN((I-AA' )B)f & (I-AA )B(N/A)VB(I-AA ) - 0.

These conditions are equivalent to the necessary and

sufficient conditions f or equality given In Remark (a)

above. Actually, the Interests of Carlson et al are not

restricted to symmetric partitioned matrices, and the

method of proof they use Is correspondingly more general.

(c) Lemma 5.2 Is actually a special case of Theorem 6.1.

This fact Is not Immediately obvious, but Is consequent

upon the following calculations. When

C - 0, (N/A) - -B'A +B, and

dim(B'N(A)nR(-B A B)) s {N(A)nR(A B)) -0.

Consequently, B N(A)cN(K/A), so that

In (BN(A)nR(M/A); -(N/A) + (0.0,0),

and

t a dIm{B'N(A)nN(M/A)) -dim BI N(A)

-dim(N(A)rnR(B)). (6.22)

Then (6.12) becomes

In M - InA + In(W(-A +)B) + (t,t,-2t). (6.23)

According to equation (4.1), In(B' (-A +)B) can be rewritten

as In*(B (-A +)B) + (0,0,n-p), and Corollary 4.3 can be applied to

eliminate In (B(-A +)B) In favour of a term In*(Ni(B );-A). The

relation so obtained is

1 In fact, the paper of Carlson et al contains a typographical
error in which the Inclusion sign has been replaced by an

equality.



InK - InA + In(-A+ ) - In (N(B ) ; -A)

+ (t-d,t-d, - 2(t-d) + n-p),

where

d - dim(R(S)nAN(5' )).

out,

InA + In(-A + ) + (w(A) + P(A), w(A) + P(A), 26(A))

- (n-8(A). m-8(A), 26(A))

and

t - 8(A) , dlm(N(A)nR(B)) - dim(N(A)) - - dim(N(A)rN(B' )).

Consequently, equation (5.3) is recovered.

Example 6.2. Consider the matrix

N '1 0 0 0
0 1 1

1 -1
0 1 -1 1

Here

A + [' 0].-[ o]A C 1-

and

B'N(A) - N(M/A) - span (1,1).

Then Theorem 6.1 reduces to

InM a (1,0,1) + (1,0.1) + (0.0.0) + (1.1,-2) - (3,1,0).

and it can be verified that N has elgenvalues ±r2,1,&2.

We now consider a problem involving partitioned matrices that

was originally posed by Morse (1971), and which has also been ana-
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lyzed In terms at the standard, as opposed to generalized, Schur

complement by Cattle (1974). The problem Is to determine

In (N(T);H)

where the (mvn)wc(m-n) matrix H Is partitioned as in (6.1) and

T - A 3].

That Is the constraint matrix T coincides with the top segment

of the partitioned matrix N. One motivation for the study of

such problems Is the minimization of z' H z r(x~y)' H(x~y) with

respect to the variable x only.

Corollary 2.7 is applied with S (F 0S ). Then

S- ((zy): Ax + By- 0)-N(T).

Moreover,

Se'sM - (N(A),O)

so that de(5) - dim(SnS r'R(H)) - dim(N(A)nR(B)). Consequently,

it may be concluded that

InN - InA + In (N(T);H) + (d,d,-d-6(A)) (6.24)

where

d - diu(N(A)nR(B)) - dim(D'N(A)).

More@ (op. cit.) obtained results In two special cases, namely H

nonsingular, or A nonsingular. When A Is nonaingular, (6.24)

reduces to

InN M - nA + In (N(T);H), with 6(A) - 0.

As was pointed out by Cattle (op. cit.), this case Is particularly

straightforward because
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N(T) - A- R(B),

and the restriction of N to N(T) coincides with the quadratic

form associated with the matrix M/A. That Is

S

In (N(T);M) - In(M/A).

The second case considered by Morse was N nonsingular.

This assumption implies that

N(A)cR(B),

so
d - 6(A).

Rearrangement of (6.24) then provides the equations

P(M) - aA) + V (N(T);M) + 6(A),

6(A) - 6 (N(T);M),

and

w(M) - u(A) + (N(T);M) + 6(A),

which results are equivalent to the relations obtained by Morse

and rederived by Cottle.

In point of fact, the main thrust of Morse's work was to

obtain an expression for the quantity InN - InA, and the

introduction of the restriction of M to N(T), was one natural

way to find such expressions. However, Theorem 6.1 provides a

different formula for InN - InA. Of course, (6.24) and (6.12)

are closely related. They coincide exactly in the case that A

Is Invertible. However, in general, the two equations provide

distinct information.

Other results are obtained If the quantity InN - InA is

eliminated from (6.12) and (6.24) to obtain an expression for

In (N(T);N). Ne shall only consider the case C - 0, In which
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In N- InA can be eliminated between (6.23) and (6.24), to

obtain

In (N(T);M) - Xn(D'(-A +)B) + (0,0. O(A)-t) (6.25)

where

t - dia(N(A)nR(B)).

ButIn(B'(-A )B) - In(B (-A )B) + (0,0, n-p)

- In (R(B);-A +) + (0,0, n-p)

and, as In equation (3.7),

In*(R(B);-A) + In *(A +N(B );-A) I n*(N(B ) A;-A)
- (0,0, dlm(N(A)nN(B'))

Substitution into (6.25) then yields

Lemma 6.3. Let the (m+n)x(m+n) symmetric matrix N be

partitioned as

N 10C11o (6.26)

where B is mxii of rank p. Let

T -[A B].

Then

In*(N(T);M) - In (N(e ) A;-A) + (0.0. n-p) (6.27)

Lemma 6.3 was first obtained by Han (1986, Theorem 2.2) in

his Investigations concerning the Wolfe dual that arises in

nonlinear programming.

When N is of the form (6.26) we have obtained three expres-

sions for InN, namely (8.3), (6.23) and (6.24). It has already

34



been remarked that equations (6.23) and (5.3) are, in a certain

sense, dual. If InN is eliminated between (5.3) and (6.24),

rather than between (6.23) and (6.24) we obtain, after some

calculation,

In (N(T);M) - In(-A) - In*(N(B');-A) + (-d .-d',d + d + n-p)

where

d - dim(N(B )nN(B )A dlm(N(A)rN(E )) + d(N(BT ))

and

d°(N(B')) - d" dimfA N(B')nR(B)).

As was to be expected this last result can be obtained directly

from (6.27) by use of Corollary 2.7 to eliminate the term

in (NW )A;-A).

As a final comment it is instructive to notice that the

proofs of (6.12) and (6.24) both start with an application of

Corollary 2.7 to the matrix N. However, the choice of subspace

S is different. When S - (R(A),0) the analysis leads to

(6.12). When S - (Pm,0 ), (6.24) is obtained.

*7. Tests for Positivety of Restricted Quadratic Forms

The preceding development has exploited the equivalence of

symmetric matrices and quadratic forms, but the main focus has

been on inertia theorems for matrices. Emphasis is now switched

to consideration of quadratic furms. In particular, we shall

consider tests that guarantee either

xAx > 0 Wx a S\(o) (7.1)
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or

x Ax z VX E S. (7.2)

Here, as before, A is an mxm symmetric matrix and S is a

subspace of P. It Is further assumed that

S - N(W) (7.3)

where B is an m-m matrix of rank p.

One motivation for the study of conditions such as (7.1) and

(7.2) arises in constrained nonlinear programming. Then A is to

be interpreted as the Hessian of the Lagrangian, and B is the

transpose of the matrix that is the gradient of the constraints.

Details can be found in many references, for example, Hestenes

(1966).

In the notation of this development, condition (7.1) Is

equivalent to

In (S;A) - (m-pO,O), (7.4)

and (7.2) is equivalent to

(S;A) a 0. (7.5)

It is apparent that the preceding theory Is relevant, but that

theory merely translates conditions such as (7.4) or (7.5) into

different criteria. The immediate question that arises is whether

any new criterion is actually easier to verify than the original

condition. Concomitantly, before a proper discussion of the pro-

blem can be undertaken, some assumptions must be made as to what

quantities are comparitively easy to compute. The assumptions

that will be made here are:
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(1) If a concrete expression for a matrix is known, its

inertia can be calculated.

(i) Calculations of inverses, or generalized inverses, are

to be avoided.

According to these maxims, calculation of In MAB, which

involves knowledge of In*B AB and the rank of B, would be

preferred to calculation of In (N(B');A). This is because the

concrete matrix whose inertia is associated with In (N(B');A) is

(I-BB+)A(I-BB+), which matrix must first be found.

The theory described in this work offers two indirect ap-

proaches to the verification of conditions such as (7.1) or (7.2).

The first Indirect approach is offered by Corollary 2.7, or one of

its mutations involving A+. For example, equations (3.1), (4.1)

and Corollary (4.1) provide the equation

In (N(B');A) - InA - nB A +B + (d,d, n-p-2d) (7.6)

where

d = dim(R(AB)nN(BT )). (7.7)

S

Thus, conditions (7.4) and (7.5) on In (N(B );A) can be trans-

lated into conditions on InA, In*(R(B);A + ) and d. According to

assumption (i) above, it is easier to calculate InA than to
S

calculate In (N(e );A). However, two other quantities remain to

be determined, and the generalized inverse A+ appears. Never-

theless, this first indirect approach was successfully employed in

an analogous infinite-dimensional problem considered by Naddocks

(1955). The crucial feature of that example was that while S - N((')
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was of infinite dimension, S was of low dimension. Consequent-

ly, calculation of In*(R(B);A +) was reduced to the solution of a

small number of inhomogeneous equations of the form

Ax = bi t

II
where b i 1Is a basis for R(B). The analysis of the problem of

Morse that was presented at the end of §6 provides another example

of this first, Indirect approach to the determination of

In*(N(E );A).

The second indirect approach is provided by Lemma 5.2, which

may be rewritten

S

In (N(B );-A) - (m-d, m-d, n-p+2d) - InM. (7.8)

where

d -dm(N(B' )nN(W ) A 6 (N(E);-A) (7.9)

and M is the bordered matrix (cf. Cottle, 1974, Chabrillac &

Crouzeix, 1984)

M =](7.10)

It should here be remarked that

((' ) -A) - t (N(B) ;A) , i (N(B );-A) (N(B');A),

6 (N( );-A) 6 (N( );A),

so that (7.8) does provide an expression for In*(N(BD);A). Actu-

ally, from the point of view of this development it would be more

natural to introduce a bordered matrix with upper left element

-A, but that approach Is not In accord with previous works.
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According to our assumptions, calculation of In M Is

straightforward, albeit that N is an (m+n)x(m+n) matrix rather

than a m-m matrix. The degree of complexity involved in

calculation of d is not immediately apparent. However, the

particular structure of (7.8) makes this issue mute for we have

Theorem 7.1. Let S and N be defined as in (7.3) and (7.10).

Then 1 has at least p positive, p negative and (n-p) zero

eigenvalues. Moreover,

(i) property (7.1) holds if and only if w(M) - m;

and

(1i) property (7.2) holds if and only if P(M) - p.

This result is due to Chabrillac & Crouzeix (1984, Theorem

1). It also follows from (2.2), (7.4), (7.5), (7.8) and (7.9).

It should be remarked that while the two lines of attack

suggested here are in some respects similar, they also possess

intrinsic differences. The first method is based upon A-orthogo-

nality in P m: the second method is based upon M-orthogonality in

m+n

The theory of the bordered matrix has further ramifications.

For example, Ran (1986) discusses Its role in the theory of Wolfe

duality In nonlinear programming. Another potentially interesting

observation is that in problems where the subspace S of (7.1) or

(7.2) is defined in terms of the range of B, equation (6.23) can

be used as the basis of a result involving a bordered matrix with

top left entry A+ .
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Finally, It should be stressed that there are approaches to

conditions (7.1) and (7.2) other than the Inertia, or Index,

theory described here. For example, there are tests involving

determinants, and tests based upon penalization or augmentability

methods. Chabrillac & Crouzeix (1984) survey several of these

techniques.

§8. Summary & Discussion

*
The first part of this work Introduces an inertia In (S;A)

that is associated with a pair comprising a subspace S and a

symmetric matrix A. The main result Is Theorem 2.6 which states

relations between In*(S;A) and In*(SA;A), where SA  is the

subspace that is the A-orthogonal complement of S. This theory

essentially comprises a specialization to finite-dimensions, and

an extension of, a general Hilbert space theory developed by

Hestenes (1951) and Maddocks (1985).

The definition and properties of In (S;A) are nontrivial

precisely because the matrix A need not map the subspace S to

Itself. Indeed the quantity

d (S;A) - dim(SnS AnR(A))0

known as the relative nullity of A on S, plays a central role

In this analysis. Han & Fujlwara (1985) developed a comparable

flnite-dimenslonal theory under additional hypotheses guaranteeing

that the relative nullity d*(S;A) vanishes. A corollary of the

analysis given here is that d*(S;A) vanishes precisely when PmIAcan be written as the sum S+SA .
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The analysis of §§2 and 3 Is applied in §§4,5 and 6 to obtain

results concerning the (standard) Inertias of symmetric matrices

with particular structures. The first results (Corollaries 4.1 -

4.3) concern matrices of the form B A B . The statement of Corol-

lary 4.1 is rather complicated, but It Is the direct generaliza-

tion to matrices B not of full rank, of Sylvester's Law of

Inertia.

Sections 5 and 6 treat symmetric partitioned matrices M of

the form

M = [BT . (8.1)

The main result for such matrices is Theorem 6.1, which relates

the inertias of the matrices M, A and M/A, the generalized

Schur complement of A in M. The statement of Theorem 6.1 is

again somewhat complicated, but it subsumes inequalities obtained

by Carlson et al (1974), and, In the case of A being Invertible,

an inertia theorem of Haynsworth (1968) is recovered.

Several of the results on partitioned matrices concern the

case C = 0, i.e.

M = [ . (8.2)

For such matrices three different expressions for the Inertia of

M are obtained, namely equations (5.3), (6.23) and (6.24). Equa-

tion (5.3) Includes a widely known result, here stated as Corol-

lary 5.4, in which B has full rank. ChabrIllac & Crouzelx

(1984) obtained a result closely related to equation (5.3), but

they state the result in terms of properties of quadratic forms
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(vide infra). Han & Fujiwara (1985) obtain an expression equiva-

lent to (5.3) in the special case that the quantity d, defined

In (5.4), vanishes.

Equation (5.3) is here derived directly, whereas equation

(6.23) is obtained as a special case of Theorem 6.1. However,

equations (5.3) and (6.23) are also shown to be dual in a sense

associated with the A-orthogonallty theory developed in 1§2 and 3.

Equations (5.3) and (6.23) involve various restricted iner-

tias of A, but only the unrestricted inertia of M. However,

equation (6.24) Involves the inertia of N restricted to the

nullspace of the mx(m+n) matrix

T = [A B].

When the triple InM is eliminated between equations (6.23) and

(6.24) further information is obtained, which is here formalized

as Lemma 6.3. This result is originally due to Han (1986), who

exploited it in the context of the Wolfe dual that arises in

nonlinear programming.

Equation (6.24) remains valid in the case C o 0. It then

encompasses results of Morse (1971) and Cottle (1974) that apply

in either of the cases of A or N being nonsingular.

The properties of restricted quadratic forms are considered

in 97. Two approaches to tests for positivity of a quadratic form

3JAx on a subspace S - N(1' )cFm  are described. The first test

exploits A-orthogonality in F . The second test, originally due

to Chabrillac & Crouzeix (1984), involves the (m+n)x(m+n) bordered
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matrix M of the form (8.2). This last test is here shown to be

a consequence of M-orthogonallty in R

It has already been remarked that the essence of the theory

developed In §§2 and 3 can be obtained by specialization to

finite-dimensions of a more general Hilbert space theory. As Is

detailed In §§4 to 7, this descent from Infinite-dimensions allows

both an extension and a unification of known finite-dimensional

results. Contrariwise, few of the proofs utilized here are intrin-

sically finite-dimensional, and some of the known matrix results

now indicate potentially viable routes to new theorems valid in

Hilbert space. For example, the bordered matrix (8.2) is the

direct analogue of certain systems of linear differential equa-

tions that arise in the study of the second-variation in the

isoperimetric calculus of variations. (see, for example,

Maddocks, 1985,§3).
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